Environ. Sci. & Technol. |脂质体分析耦合数字病理学...

2023年7月,孙凯伦博士研究生的论文被Environmental Science & Technology接收发表。 详细

Journal of Environmental Management.| 利用生物炭作...

2023年06月,方书伟硕士的论文被Journalof Environmental Management接收发表。 详细

Chemosphere|生物炭作为电子穿梭体促进土壤中Cr(VI)的...

2023年03月,任佳硕士的论文被Chemosphere接收发表 详细

功能材料开发与应用 当前所在位置:首页 >> 研究成果 >> 各方向研究成果 >> 功能材料开发与应用
Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure 2017-11-27

Ling Zhao, Wei Zheng, Xinde Cao

abstract

This study investigated the distribution and evolution of organic phases during biochar formation from twelve waste biomass and at the highest heating temperatures between 200 and 650. Relation of the organic phase transformation to the carbon loss and pore structure was also analyzed. The organic phases in both feedstock biomass and the derived biochar were sequentially separated into four fractions: neutral detergent soluble fraction, hemicellulose, cellulose, and lignin. Plant-based residues mainly contained cellulose (25.8–64.6%), while municipal solid wastes had a large fraction of neutral detergent soluble fraction (22.9–65.0%). Transformation of cellulose into detergent soluble fraction and hemicellulose initially happened at the charring temperature between 100 and 200, and the complete transformation was observed at the higher temperatures from 200 to 350. The high lignin amount in biochar may be partly formed from the aromatization of cellulose fraction in addition to the contribution from the existing lignin in feedstock. All biochars had small total pore volumes ranging from 0.009 cm3 g-1 to 0.278 cm3 g-1 and were a type of mesoporous material with the pore sizes between 2 nm and 30 nm. The decrease of detergent soluble fraction, hemicellulose, and cellulose fractions had little effect on pore formation, but it was positively related to the C loss during pyrolysis. Pore volume and surface area seemed to have a positive relationship with lignin percentage and insoluble minerals in feedstock. This study provided insight into the mechanism of biochar formation related to the C loss and pore structure evolution. It will help produce the designated biochar with different environmental functions.


版权所有@土壤与地下水污染修复技术团队  沪交ICP备20180001