Environ. Sci. & Technol. |脂质体分析耦合数字病理学...

2023年7月,孙凯伦博士研究生的论文被Environmental Science & Technology接收发表。 详细

Journal of Environmental Management.| 利用生物炭作...

2023年06月,方书伟硕士的论文被Journalof Environmental Management接收发表。 详细

Chemosphere|生物炭作为电子穿梭体促进土壤中Cr(VI)的...

2023年03月,任佳硕士的论文被Chemosphere接收发表 详细

功能材料开发与应用 当前所在位置:首页 >> 研究成果 >> 各方向研究成果 >> 功能材料开发与应用
Phosphorus-Assisted Biomass Thermal Conversion: Reducing Carbon Loss and Improving Biochar Stability 2017-11-27

Ling Zhao, Xinde Cao, Wei Zheng, Yue Kan

Abstract

There is often over 50% carbon loss during the thermal conversion of biomass into biochar, leading to it controversy for the biochar formation as a carbon sequestration strategy. Sometimes the biochar also seems not to be stable enough due to physical, chemical, and biological reactions in soils. In this study, three phosphorus-bearing materials, H3PO4, phosphate rock tailing (PRT), and triple superphosphate (TSP), were used as additives to wheat straw with a ratio of 1: 0.4– 0.8 for biochar production at 500˚C, aiming to alleviate carbon loss during pyrolysis and to increase biochar-C stabilization. All these additives remarkably increased the biochar yield from 31.7% (unmodified biochar) to 46.9%–56.9% (modified biochars). Carbon loss during pyrolysis was reduced from 51.7% to 35.5%–47.7%. Thermogravimetric analysis curves showed that the additives had no effect on thermal stability of biochar but did enhance its oxidative stability. Microbial mineralization was obviously reduced in the modified biochar, especially in the TSP-BC, in which the total CO2 emission during 60-d incubation was reduced by 67.8%, compared to the unmodified biochar. Enhancement of carbon retention and biochar stability was probably due to the formation of meta-phosphate or C-O-PO3, which could either form a physical layer to hinder the contact of C with O2 and bacteria, or occupy the active sites of the C band. Our results indicate that pretreating biomass with phosphors-bearing materials is effective for reducing carbon loss during pyrolysis and for increasing biochar stabilization, which provides a novel method by which biochar can be designed to improve the carbon sequestration capacity.


版权所有@土壤与地下水污染修复技术团队  沪交ICP备20180001